PARTIAL MILK YIELD, MILK CHOLESTEROL AND BODY WEIGHT OF LACTATING WEST AFRICAN DWARF DOES

¹Idowu, S.T., ¹Adewumi, O.O., ¹Fasae, O.A., ²Williams, T.J. and ¹Boyle-Renner, A.

¹Department of Animal Production and Health, Federal University of Agriculture P.M.B. 2240, Abeokuta, Nigeria ²Department of Animal Physiology, Federal University of Agriculture P.M.B. 2240, Abeokuta, Nigeria

INTRODUCTION

- Goats in Nigeria are kept mainly for meat productions, the milk is not substantially consumed (Midau *et al.*, 2010, Adewumi *et al.*, 2015).
- However, there is a growing awareness of the importance of goats as source of milk for man (Malau-Aduli *et al.*, 2001, Adewumi *et al.*, 2015).

INTRODUCTION

• One of the controversial components of goat milk is the cholesterol content

• Cholesterol concentration depends on year or season, feeding system, stage of lactation and breed (Park, 1990, 1991)

INTRODUCTION

• The aim of this research work is to investigate the partial milk yield, milk cholesterol and body weight of lactating West African Dwarf does

- Experimental site
- Experimental animals and their management
 - A total of twelve (12) lactating West African Dwarf (WAD) does with mean initial weight of 24.5 ± 1.58 kg and 2 years of age were used for the experiment.
 - The WAD does were sourced from teaching farm of FUNAAB. They were housed intensively in a wellventilated pen, in an open-sided pen with corrugated aluminium roofing sheet and a wooden slatted floor.

• Experimental diet

 The animals were fed at 5 % of their body weight. Concentrate diets were offered once daily at 09:00 hours. *Panicum maximum* was used as basal diet and clean water was offered *ad libitum* to all the animals.

• Milk sample collection and analysis

- Milk samples were taken at weekly intervals for 70 days from day 7 postpartum; this was done to allow the kids have access to all their dams' colostrum.
- Prior to milking, dams were separated from their kids in the evening (19:00 hrs) till (07:00 hrs) the next morning. The two halves of the udder were handmilked once weekly within (08:00 – 10:00 hrs).
- The quantity of milk collected from each doe was measured using a measuring cylinder and recorded before sub-samples of 20 ml were collected, bulked and refrigerated until needed for milk cholesterol analysis.

- Chemical analysis
 - Milk cholesterol was determined using A.O.A.C.
 (2010) procedures.
 - Statistical analysis
 - The data obtained from the study were subjected to One way analysis of variance (ANOVA) using SPSS (1999) software procedures in a completely randomized design. Significant differences were separated using Tukey's studentized test.

RESULTS AND DISCUSSION

Table 1: Effect of weeks of lactation on milk yield, milk cholesterol and weight of lactating West African Dwarf does

Weeks of	Milk yield (ml)	Milk cholesterol	Weight (kg)
lactation		(mg/100g)	
1	257.50 ^{bcd}	21.06 ^b	25.41 ^a
2	307.66 ^{abc}	17.36b ^c	24.00 ^b
3	334.83 ^{ab}	42.36 ^a	23.54 ^b
4	360.25 ^a	22.26 ^b	23.54 ^b
5	272.16 ^{abcd}	12.96 ^{cd}	23.45 ^b
6	283.25 ^{abcd}	11.13 ^d	23.58 ^b
7	259.75 ^{abcd}	9.73 ^d	23.45 ^b
8	213.41 ^{cd}	9.60 ^d	23.50 ^b
9	198.08 ^d	9.36 ^d	22.87°
10	182.50 ^d	8.43 ^d	22.58°
SEM	31.70	1.91	0.18
P value	0.00	0.05	0.00

^{a,b,c,d} Means in the same row with different superscripts are significantly different (P<0.05)

CONCLUSION

• The study concluded that weeks of lactation significantly affected milk yield, milk cholesterol content and body weight.

REFERENCES

- Adewumi, O.O., Lawal-Adebowale, O.A. and Adegbemile, D.A. 2015. Assessment of Farm Families' Acceptability of Small Ruminants' Milk for Consumption in Selected Rural Communities in Ogun State, Nigeria. *Journal of Agricultural Extension and Rural Development* 7(4): 135-141.
- AOAC. 2010. AOAC Official Method. Cholesterol in Foods. Direct Saponification-Gas Chromatography Method, First Action 1994. Standard AOAC Published, page 2.
- Malau-Aduli, B.S., Eduvie, I.O., Lakpini, C.A.M. and Malau-Aduli, A.E.O. 2001. Effect of Supplementation on the Milk Yield of Red Sokoto Does. Proceedings of the 26th Annual Conference of Nigerian Society of Animal Production, March 21-25, 2001, ABU, Zaria, Nigeria pp: 353-355.
- Midau A., Kibon A., Morumpa S.M. and Augustine C. 2010. Influence of Season on Milk Yield and Milk Composition of Red Sokoto Goats in Mubi Area of Adamawa State, *Nigerian Journal of Dairy Science* 5: 135-141.
- Park, Y.W. 1990. Nutrient Profiles of Commercial Goat Milk Cheeses Manufactured in the United States. *Journal of Dairy Science* 73: 3059–3067.
- •
- Park, Y.W. 1991. Relative Buffering Capacity of Goat Milk, Cow Milk, Soy-Based Infant Formulas, and Commercial Non-Prescription Anti acid Drugs. *Journal of Dairy Science* 74: 3326-3333.

THANK YOU FOR LISTENING